A Lack‐of‐Fit Test for Heteroscedastic Regression Models via Cosine‐Series Smoothers
Chin‐Shang Li
Australian & New Zealand Journal of Statistics, 2003, vol. 45, issue 4, 477-489
Abstract:
In this paper, a test is derived to assess the validity of heteroscedastic nonlinear regression models by a non‐parametric cosine regression method. For order selection, the paper proposes a data‐driven method that uses the parametric null model optimal order. This method yields a test that is asymptotically normally distributed under the null hypothesis and is consistent against any fixed alternative. Simulation studies that test the lack of fit of a generalized linear model are conducted to compare the performance of the proposed test with that of an existing non‐parametric kernel test. A dataset of esterase levels is used to demonstrate the proposed method in practice.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/1467-842X.00299
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:anzsta:v:45:y:2003:i:4:p:477-489
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1369-1473
Access Statistics for this article
Australian & New Zealand Journal of Statistics is currently edited by Chris J. Lloyd, Rob J. Hyndman and Russell B. Millar
More articles in Australian & New Zealand Journal of Statistics from Australian Statistical Publishing Association Inc.
Bibliographic data for series maintained by Wiley Content Delivery ().