EconPapers    
Economics at your fingertips  
 

Sparse vector error correction models with application to cointegration‐based trading

Renjie Lu, Philip L.H. Yu and Xiaohang Wang

Australian & New Zealand Journal of Statistics, 2020, vol. 62, issue 3, 297-321

Abstract: Inspired by constructing large‐size cointegrated portfolios, this paper considers a vector error correction model and develops the adaptive Lasso estimator of the cointegrating vectors. The asymptotic properties of the estimators and the oracle property of the adaptive Lasso are derived. An optimisation algorithm for estimating the model parameters is proposed. The simulation study shows the effectiveness of the parameter estimation procedures and the forecasting performance of our model. In the empirical study, we apply the proposed method to construct the sparse cointegrated portfolios with or without market‐neutral property. The trading performances of different types of cointegrated portfolios are evaluated using the Dow Jones Industrial Average composite stocks. The empirical findings reveal that the sparse cointegrated market‐neutral portfolios of a number of securities are capable to benefit the investors who wish to construct statistical arbitrage portfolios which are market‐neutral.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/anzs.12304

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:anzsta:v:62:y:2020:i:3:p:297-321

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1369-1473

Access Statistics for this article

Australian & New Zealand Journal of Statistics is currently edited by Chris J. Lloyd, Rob J. Hyndman and Russell B. Millar

More articles in Australian & New Zealand Journal of Statistics from Australian Statistical Publishing Association Inc.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:anzsta:v:62:y:2020:i:3:p:297-321