Akaike's Information Criterion in Generalized Estimating Equations
Wei Pan
Biometrics, 2001, vol. 57, issue 1, 120-125
Abstract:
Summary. Correlated response data are common in biomedical studies. Regression analysis based on the generalized estimating equations (GEE) is an increasingly important method for such data. However, there seem to be few model‐selection criteria available in GEE. The well‐known Akaike Information Criterion (AIC) cannot be directly applied since AIC is based on maximum likelihood estimation while GEE is nonlikelihood based. We propose a modification to AIC, where the likelihood is replaced by the quasi‐likelihood and a proper adjustment is made for the penalty term. Its performance is investigated through simulation studies. For illustration, the method is applied to a real data set.
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (144)
Downloads: (external link)
https://doi.org/10.1111/j.0006-341X.2001.00120.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:57:y:2001:i:1:p:120-125
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().