Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates
Min Zhang,
Anastasios A. Tsiatis and
Marie Davidian
Biometrics, 2008, vol. 64, issue 3, 707-715
Abstract:
Summary The primary goal of a randomized clinical trial is to make comparisons among two or more treatments. For example, in a two‐arm trial with continuous response, the focus may be on the difference in treatment means; with more than two treatments, the comparison may be based on pairwise differences. With binary outcomes, pairwise odds ratios or log odds ratios may be used. In general, comparisons may be based on meaningful parameters in a relevant statistical model. Standard analyses for estimation and testing in this context typically are based on the data collected on response and treatment assignment only. In many trials, auxiliary baseline covariate information may also be available, and it is of interest to exploit these data to improve the efficiency of inferences. Taking a semiparametric theory perspective, we propose a broadly applicable approach to adjustment for auxiliary covariates to achieve more efficient estimators and tests for treatment parameters in the analysis of randomized clinical trials. Simulations and applications demonstrate the performance of the methods.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
https://doi.org/10.1111/j.1541-0420.2007.00976.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:64:y:2008:i:3:p:707-715
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().