Bayesian Optimal Design for Phase II Screening Trials
Meichun Ding,
Gary L. Rosner and
Peter Müller
Biometrics, 2008, vol. 64, issue 3, 886-894
Abstract:
Summary Most phase II screening designs available in the literature consider one treatment at a time. Each study is considered in isolation. We propose a more systematic decision‐making approach to the phase II screening process. The sequential design allows for more efficiency and greater learning about treatments. The approach incorporates a Bayesian hierarchical model that allows combining information across several related studies in a formal way and improves estimation in small data sets by borrowing strength from other treatments. The design incorporates a utility function that includes sampling costs and possible future payoff. Computer simulations show that this method has high probability of discarding treatments with low success rates and moving treatments with high success rates to phase III trial.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/j.1541-0420.2007.00951.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:64:y:2008:i:3:p:886-894
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().