Marginal analysis of multiple outcomes with informative cluster size
A. A. Mitani,
E. K. Kaye and
K. P. Nelson
Biometrics, 2021, vol. 77, issue 1, 271-282
Abstract:
In surveillance studies of periodontal disease, the relationship between disease and other health and socioeconomic conditions is of key interest. To determine whether a patient has periodontal disease, multiple clinical measurements (eg, clinical attachment loss, alveolar bone loss, and tooth mobility) are taken at the tooth‐level. Researchers often create a composite outcome from these measurements or analyze each outcome separately. Moreover, patients have varying number of teeth, with those who are more prone to the disease having fewer teeth compared to those with good oral health. Such dependence between the outcome of interest and cluster size (number of teeth) is called informative cluster size and results obtained from fitting conventional marginal models can be biased. We propose a novel method to jointly analyze multiple correlated binary outcomes for clustered data with informative cluster size using the class of generalized estimating equations (GEE) with cluster‐specific weights. We compare our proposed multivariate outcome cluster‐weighted GEE results to those from the convectional GEE using the baseline data from Veterans Affairs Dental Longitudinal Study. In an extensive simulation study, we show that our proposed method yields estimates with minimal relative biases and excellent coverage probabilities.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13241
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:1:p:271-282
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().