EconPapers    
Economics at your fingertips  
 

A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation

Kaiqiong Zhao, Karim Oualkacha, Lajmi Lakhal‐Chaieb, Aurélie Labbe, Kathleen Klein, Antonio Ciampi, Marie Hudson, Inés Colmegna, Tomi Pastinen, Tieyuan Zhang, Denise Daley and Celia M.T. Greenwood

Biometrics, 2021, vol. 77, issue 2, 424-438

Abstract: Identifying disease‐associated changes in DNA methylation can help us gain a better understanding of disease etiology. Bisulfite sequencing allows the generation of high‐throughput methylation profiles at single‐base resolution of DNA. However, optimally modeling and analyzing these sparse and discrete sequencing data is still very challenging due to variable read depth, missing data patterns, long‐range correlations, data errors, and confounding from cell type mixtures. We propose a regression‐based hierarchical model that allows covariate effects to vary smoothly along genomic positions and we have built a specialized EM algorithm, which explicitly allows for experimental errors and cell type mixtures, to make inference about smooth covariate effects in the model. Simulations show that the proposed method provides accurate estimates of covariate effects and captures the major underlying methylation patterns with excellent power. We also apply our method to analyze data from rheumatoid arthritis patients and controls. The method has been implemented in R package SOMNiBUS.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13307

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:2:p:424-438

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:424-438