EconPapers    
Economics at your fingertips  
 

Structural factor equation models for causal network construction via directed acyclic mixed graphs

Yan Zhou, Peter X.‐K. Song and Xiaoquan Wen

Biometrics, 2021, vol. 77, issue 2, 573-586

Abstract: Directed acyclic mixed graphs (DAMGs) provide a useful representation of network topology with both directed and undirected edges subject to the restriction of no directed cycles in the graph. This graphical framework may arise in many biomedical studies, for example, when a directed acyclic graph (DAG) of interest is contaminated with undirected edges induced by some unobserved confounding factors (eg, unmeasured environmental factors). Directed edges in a DAG are widely used to evaluate causal relationships among variables in a network, but detecting them is challenging when the underlying causality is obscured by some shared latent factors. The objective of this paper is to develop an effective structural equation model (SEM) method to extract reliable causal relationships from a DAMG. The proposed approach, termed structural factor equation model (SFEM), uses the SEM to capture the network topology of the DAG while accounting for the undirected edges in the graph with a factor analysis model. The latent factors in the SFEM enable the identification and removal of undirected edges, leading to a simpler and more interpretable causal network. The proposed method is evaluated and compared to existing methods through extensive simulation studies, and illustrated through the construction of gene regulatory networks related to breast cancer.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13322

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:2:p:573-586

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:573-586