EconPapers    
Economics at your fingertips  
 

Covariate‐driven factorization by thresholding for multiblock data

Xing Gao, Sungwon Lee, Gen Li and Sungkyu Jung

Biometrics, 2021, vol. 77, issue 3, 1011-1023

Abstract: Multiblock data, where multiple groups of variables from different sources are observed for a common set of subjects, are routinely collected in many areas of science. Methods for joint factorization of such multiblock data are being developed to explore the potentially joint variation structure of the data. While most of the existing work focuses on delineating joint components, shared across all data blocks, from individual components, which is only relevant to a single data block, we propose to model and estimate partially joint components across some, but not all, data blocks. If covariates, with potential multiblock structures, are available, then the components are further modeled to be driven by the covariate information. To estimate such a covariate‐driven, block‐structured factor model, we propose an iterative algorithm based on thresholding, by transforming the problem of signal segmentation into a grouped variable selection problem. The proposed factorization provides accurate estimation of individual and (partially) joint structures in multiblock data, as confirmed by simulation studies. In the analysis of a real multiblock genomic dataset from the Cancer Genome Atlas project, we demonstrate that the estimated block structures provide straightforward interpretation and facilitate subsequent analyses.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13352

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:3:p:1011-1023

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:77:y:2021:i:3:p:1011-1023