Evaluating and improving a matched comparison of antidepressants and bone density
Ruoqi Yu
Biometrics, 2021, vol. 77, issue 4, 1276-1288
Abstract:
Matching is a common approach to covariate adjustment in estimating causal effects in observational studies. It is important to assess covariate balance of the matched samples. This is usually done informally, in ways that have a number of limitations. First, there are many diagnostics, even if covariates are assessed one at a time, which raises multiplicity issues. In addition, joint distributions of covariates, even bivariate distributions, are often ignored. Further, it is an open question whether diagnostics identify the major problems. To address these issues, a formal assessment of covariate balance is developed in the current paper. Unlike the common informal diagnostics, the proposed method compares both marginal distributions and joint distributions of the matched sample with those of the benchmark, complete randomizations. The method controls the probability of falsely identifying a covariate imbalance among many comparisons, yet it has a high probability of correctly detecting and identifying a major problem. An R package met implementing the proposed method is available on CRAN.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13374
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:4:p:1276-1288
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().