EconPapers    
Economics at your fingertips  
 

Analysis of local sensitivity to nonignorability with missing outcomes and predictors

Heng Chen and Daniel F. Heitjan

Biometrics, 2022, vol. 78, issue 4, 1342-1352

Abstract: The ISNI (index of sensitivity to local nonignorability) method quantifies local sensitivity of parametric inferences to nonignorable missingness in an outcome variable. Here we extend ISNI to the situations where both outcomes and predictors can be missing and where the missingness mechanism can be either parametric or semi‐parametric. We define the quantity MinNI (minimum nonignorability) to be an approximation to the norm of the smallest value of the transformed nonignorability that gives a nonnegligible displacement of the estimate of the parameter of interest. We illustrate our method in a complete data set from which we synthetically delete observations according to various patterns. We then apply the method to real‐data examples involving the normal linear model and conditional logistic regression.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13532

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:4:p:1342-1352

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:78:y:2022:i:4:p:1342-1352