Neural networks for clustered and longitudinal data using mixed effects models
Francesca Mandel,
Riddhi Pratim Ghosh and
Ian Barnett
Biometrics, 2023, vol. 79, issue 2, 711-721
Abstract:
Although most statistical methods for the analysis of longitudinal data have focused on retrospective models of association, new advances in mobile health data have presented opportunities for predicting future health status by leveraging an individual's behavioral history alongside data from similar patients. Methods that incorporate both individual‐level and sample‐level effects are critical to using these data to its full predictive capacity. Neural networks are powerful tools for prediction, but many assume input observations are independent even when they are clustered or correlated in some way, such as in longitudinal data. Generalized linear mixed models (GLMM) provide a flexible framework for modeling longitudinal data but have poor predictive power particularly when the data are highly nonlinear. We propose a generalized neural network mixed model that replaces the linear fixed effect in a GLMM with the output of a feed‐forward neural network. The model simultaneously accounts for the correlation structure and complex nonlinear relationship between input variables and outcomes, and it utilizes the predictive power of neural networks. We apply this approach to predict depression and anxiety levels of schizophrenic patients using longitudinal data collected from passive smartphone sensor data.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13615
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:2:p:711-721
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().