Nonparametric inference of general while‐alive estimands for recurrent events
Lu Mao
Biometrics, 2023, vol. 79, issue 3, 1749-1760
Abstract:
Measuring the treatment effect on recurrent events like hospitalization in the presence of death has long challenged statisticians and clinicians alike. Traditional inference on the cumulative frequency unjustly penalizes survivorship as longer survivors also tend to experience more adverse events. Expanding a recently suggested idea of the “while‐alive” event rate, we consider a general class of such estimands that adjust for the length of survival without losing causal interpretation. Given a user‐specified loss function that allows for arbitrary weighting, we define as estimand the average loss experienced per unit time alive within a target period and use the ratio of this loss rate to measure the effect size. Scaling the loss rate by the width of the corresponding time window gives us an alternative, and sometimes more photogenic, way of showing the data. To make inferences, we construct a nonparametric estimator for the loss rate through the cumulative loss and the restricted mean survival time and derive its influence function in closed form for variance estimation and testing. As simulations and analysis of real data from a heart failure trial both show, the while‐alive approach corrects for the false attenuation of treatment effect due to patients living longer under treatment, with increased statistical power as a result. The proposed methods are implemented in the R‐package WA, which is publicly available from the Comprehensive R Archive Network (CRAN).
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13709
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:3:p:1749-1760
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().