Efficient algorithms for building representative matched pairs with enhanced generalizability
Bo Zhang
Biometrics, 2023, vol. 79, issue 4, 3981-3997
Abstract:
Many recent efforts center on assessing the ability of real‐world evidence (RWE) generated from non‐randomized, observational data to produce results compatible with those from randomized controlled trials (RCTs). One noticeable endeavor is the RCT DUPLICATE initiative. To better reconcile findings from an observational study and an RCT, or two observational studies based on different databases, it is desirable to eliminate differences between study populations. We outline an efficient, network‐flow‐based statistical matching algorithm that designs well‐matched pairs from observational data that resemble the covariate distributions of a target population, for instance, the target‐RCT‐eligible population in the RCT DUPLICATE initiative studies or a generic population of scientific interest. We demonstrate the usefulness of the method by revisiting the inconsistency regarding a cardioprotective effect of the hormone replacement therapy (HRT) in the Women's Health Initiative (WHI) clinical trial and corresponding observational study. We found that the discrepancy between the trial and observational study persisted in a design that adjusted for the difference in study populations' cardiovascular risk profile, but seemed to disappear in a study design that further adjusted for the difference in HRT initiation age and previous estrogen‐plus‐progestin use. The proposed method is integrated into the R package match2C.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13919
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:4:p:3981-3997
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().