EconPapers    
Economics at your fingertips  
 

Using Survey Sampling Algorithms For Exact Inference in Logistic Regression

Louis‐Paul Rivest and Serigne Abib Gaye

International Statistical Review, 2023, vol. 91, issue 1, 18-34

Abstract: Several exact inference procedures for logistic regression require the simulation of a 0‐1 dependent vector according to its conditional distribution, given the sufficient statistics for some nuisance parameters. This is viewed, in this work, as a sampling problem involving a population of n units, unequal selection probabilities and balancing constraints. The basis for this reformulation of exact inference is a proposition deriving the limit, as n goes to infinity, of the conditional distribution of the dependent vector given the logistic regression sufficient statistics. It is proposed to sample from this distribution using the cube sampling algorithm. The interest of this approach to exact inference is illustrated by tackling new problems. First it allows to carry out exact inference with continuous covariates. It is also useful for the investigation of a partial correlation between several 0‐1 vectors. This is illustrated in an example dealing with presence‐absence data in ecology.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/insr.12507

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:91:y:2023:i:1:p:18-34

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:91:y:2023:i:1:p:18-34