AN OVERVIEW OF DYNAMIC MODEL AVERAGING TECHNIQUES IN TIME‐SERIES ECONOMETRICS
Nima Nonejad
Journal of Economic Surveys, 2021, vol. 35, issue 2, 566-614
Abstract:
Dynamic model averaging (DMA) has become a widely used estimation technique in macroeconomic applications. Since its introduction in econom(etr)ics by Gary Koop and Dimitris Korobilis in 2009, applications of DMA have increased in unimaginable ways. Besides applying the original (univariate) framework suggested by Koop and Korobilis on the data of interest, for example, the inflation rate of the country of choice or return on the rate of equity, practitioners have been able to use DMA‐based techniques to extend current models, thereby further improving out‐of‐sample forecast accuracy, overcome computational bottlenecks, and even help improve our understanding of economic phenomena by introducing new models. These include using Google search data in combination with the predictive likelihood to govern switching between different predictive regressions in the model set or specifying large time‐varying parameter vector autoregressions that can be estimated without resorting to simulation‐based techniques. This study provides an overview of DMA techniques and the ways in which they have evolved since the contribution of Koop and Korobilis.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://doi.org/10.1111/joes.12410
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jecsur:v:35:y:2021:i:2:p:566-614
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0950-0804
Access Statistics for this article
More articles in Journal of Economic Surveys from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery (contentdelivery@wiley.com).