Asset Pricing and Machine Learning: A critical review
Matteo Bagnara
Journal of Economic Surveys, 2024, vol. 38, issue 1, 27-56
Abstract:
The latest development in empirical Asset Pricing is the use of Machine Learning methods to address the problem of the factor zoo. These techniques offer great flexibility and prediction accuracy but require special care as they strongly depart from traditional Econometrics. We review and critically assess the most recent and relevant contributions in the literature grouping them into five categories defined by the Machine Learning (ML) approach they employ: regularization, dimension reduction, regression trees/random forest (RF), neural networks (NNs), and comparative analyses. We summarize the empirical findings with particular attention to their economic interpretation providing hints for future developments.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/joes.12532
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jecsur:v:38:y:2024:i:1:p:27-56
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0950-0804
Access Statistics for this article
More articles in Journal of Economic Surveys from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().