Man Versus Machine: Complex Estimates and Auditor Reliance on Artificial Intelligence
Benjamin P. Commerford,
Sean A. Dennis,
Jennifer R. Joe and
Jenny W. Ulla
Journal of Accounting Research, 2022, vol. 60, issue 1, 171-201
Abstract:
Audit firms are investing billions of dollars to develop artificial intelligence (AI) systems that will help auditors execute challenging tasks (e.g., evaluating complex estimates). Although firms assume AI will enhance audit quality, a growing body of research documents that individuals often exhibit “algorithm aversion”—the tendency to discount computer‐based advice more heavily than human advice, although the advice is identical otherwise. Therefore, we conduct an experiment to examine how algorithm aversion manifests in auditor judgments. Consistent with theory, we find that auditors receiving contradictory evidence from their firm's AI system (instead of a human specialist) propose smaller adjustments to management's complex estimates, particularly when management develops their estimates using relatively objective (vs. subjective) inputs. Our findings suggest auditor susceptibility to algorithm aversion could prove costly for the profession and financial statements users.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://doi.org/10.1111/1475-679X.12407
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:joares:v:60:y:2022:i:1:p:171-201
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0021-8456
Access Statistics for this article
Journal of Accounting Research is currently edited by Philip G. Berger, Luzi Hail, Christian Leuz, Haresh Sapra, Douglas J. Skinner, Rodrigo Verdi and Regina Wittenberg Moerman
More articles in Journal of Accounting Research from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().