Combining data from multiple spatially referenced prevalence surveys using generalized linear geostatistical models
Emanuele Giorgi,
Sanie S. S. Sesay,
Dianne J. Terlouw and
Peter J. Diggle
Journal of the Royal Statistical Society Series A, 2015, vol. 178, issue 2, 445-464
Abstract:
type="main" xml:id="rssa12069-abs-0001">
Data from multiple prevalence surveys can provide information on common parameters of interest, which can therefore be estimated more precisely in a joint analysis than by separate analyses of the data from each survey. However, fitting a single model to the combined data from multiple surveys is inadvisable without testing the implicit assumption that all of the surveys are directed at the same inferential target. We propose a multivariate generalized linear geostatistical model that accommodates two sources of heterogeneity across surveys to correct for spatially structured bias in non-randomized surveys and to allow for temporal variation in the underlying prevalence surface between consecutive survey periods. We describe a Monte Carlo maximum likelihood procedure for parameter estimation and show through simulation experiments how accounting for the different sources of heterogeneity among surveys in a joint model leads to more precise inferences. We describe an application to multiple surveys of the prevalence of malaria conducted in Chikhwawa District, Southern Malawi, and discuss how this approach could inform hybrid sampling strategies that combine data from randomized and non-randomized surveys to make the most efficient use of all available data.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssa.2015.178.issue-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:178:y:2015:i:2:p:445-464
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().