EconPapers    
Economics at your fingertips  
 

On a mixture autoregressive model

C. S. Wong and W. K. Li

Journal of the Royal Statistical Society Series B, 2000, vol. 62, issue 1, 95-115

Abstract: We generalize the Gaussian mixture transition distribution (GMTD) model introduced by Le and co‐workers to the mixture autoregressive (MAR) model for the modelling of non‐linear time series. The models consist of a mixture of K stationary or non‐stationary AR components. The advantages of the MAR model over the GMTD model include a more full range of shape changing predictive distributions and the ability to handle cycles and conditional heteroscedasticity in the time series. The stationarity conditions and autocorrelation function are derived. The estimation is easily done via a simple EM algorithm and the model selection problem is addressed. The shape changing feature of the conditional distributions makes these models capable of modelling time series with multimodal conditional distributions and with heteroscedasticity. The models are applied to two real data sets and compared with other competing models. The MAR models appear to capture features of the data better than other competing models do.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (44)

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00222

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:62:y:2000:i:1:p:95-115

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:62:y:2000:i:1:p:95-115