On a mixture autoregressive model
C. S. Wong and
W. K. Li
Journal of the Royal Statistical Society Series B, 2000, vol. 62, issue 1, 95-115
Abstract:
We generalize the Gaussian mixture transition distribution (GMTD) model introduced by Le and co‐workers to the mixture autoregressive (MAR) model for the modelling of non‐linear time series. The models consist of a mixture of K stationary or non‐stationary AR components. The advantages of the MAR model over the GMTD model include a more full range of shape changing predictive distributions and the ability to handle cycles and conditional heteroscedasticity in the time series. The stationarity conditions and autocorrelation function are derived. The estimation is easily done via a simple EM algorithm and the model selection problem is addressed. The shape changing feature of the conditional distributions makes these models capable of modelling time series with multimodal conditional distributions and with heteroscedasticity. The models are applied to two real data sets and compared with other competing models. The MAR models appear to capture features of the data better than other competing models do.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (44)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00222
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:62:y:2000:i:1:p:95-115
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().