Semiparametric estimation in general repeated measures problems
Xihong Lin and
Raymond J. Carroll
Journal of the Royal Statistical Society Series B, 2006, vol. 68, issue 1, 69-88
Abstract:
Summary. The paper considers a wide class of semiparametric problems with a parametric part for some covariate effects and repeated evaluations of a nonparametric function. Special cases in our approach include marginal models for longitudinal or clustered data, conditional logistic regression for matched case–control studies, multivariate measurement error models, generalized linear mixed models with a semiparametric component, and many others. We propose profile kernel and backfitting estimation methods for these problems, derive their asymptotic distributions and show that in likelihood problems the methods are semiparametric efficient. Although generally not true, it transpires that with our methods profiling and backfitting are asymptotically equivalent. We also consider pseudolikelihood methods where some nuisance parameters are estimated from a different algorithm. The methods proposed are evaluated by using simulation studies and applied to the Kenya haemoglobin data.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (43)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2005.00533.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:68:y:2006:i:1:p:69-88
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().