Quick and easy one-step parameter estimation in differential equations
Peter Hall and
Yanyuan Ma
Journal of the Royal Statistical Society Series B, 2014, vol. 76, issue 4, 735-748
Abstract:
type="main" xml:id="rssb12040-abs-0001">
Differential equations are customarily used to describe dynamic systems. Existing methods for estimating unknown parameters in those systems include parameter cascade, which is a spline-based technique, and pseudo-least-squares, which is a local-polynomial-based two-step method. Parameter cascade is often referred to as a ‘one-step method’, although it in fact involves at least two stages: one to choose the tuning parameter and another to select model parameters. We propose a class of fast, easy-to-use, genuinely one-step procedures for estimating unknown parameters in dynamic system models. This approach does not need extraneous estimation of the tuning parameter; it selects that quantity, as well as all the model parameters, in a single explicit step, and it produces root-n-consistent estimators of all the model parameters. Although it is of course not as accurate as more complex methods, its speed and ease of use make it particularly attractive for exploratory data analysis.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2014.76.issue-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:76:y:2014:i:4:p:735-748
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().