EconPapers    
Economics at your fingertips  
 

Multiple-change-point detection for auto-regressive conditional heteroscedastic processes

P. Fryzlewicz and S. Subba Rao

Journal of the Royal Statistical Society Series B, 2014, vol. 76, issue 5, 903-924

Abstract: type="main" xml:id="rssb12054-abs-0001">

The emergence of the recent financial crisis, during which markets frequently underwent changes in their statistical structure over a short period of time, illustrates the importance of non-stationary modelling in financial time series. Motivated by this observation, we propose a fast, well performing and theoretically tractable method for detecting multiple change points in the structure of an auto-regressive conditional heteroscedastic model for financial returns with piecewise constant parameter values. Our method, termed BASTA (binary segmentation for transformed auto-regressive conditional heteroscedasticity), proceeds in two stages: process transformation and binary segmentation. The process transformation decorrelates the original process and lightens its tails; the binary segmentation consistently estimates the change points. We propose and justify two particular transformations and use simulation to fine-tune their parameters as well as the threshold parameter for the binary segmentation stage. A comparative simulation study illustrates good performance in comparison with the state of the art, and the analysis of the Financial Times Stock Exchange FTSE 100 index reveals an interesting correspondence between the estimated change points and major events of the recent financial crisis. Although the method is easy to implement, ready-made R software is provided.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2014.76.issue-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:76:y:2014:i:5:p:903-924

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:76:y:2014:i:5:p:903-924