EconPapers    
Economics at your fingertips  
 

Testing relevant hypotheses in functional time series via self‐normalization

Holger Dette, Kevin Kokot and Stanislav Volgushev

Journal of the Royal Statistical Society Series B, 2020, vol. 82, issue 3, 629-660

Abstract: We develop methodology for testing relevant hypotheses about functional time series in a tuning‐free way. Instead of testing for exact equality, e.g. for the equality of two mean functions from two independent time series, we propose to test the null hypothesis of no relevant deviation. In the two‐sample problem this means that an L2‐distance between the two mean functions is smaller than a prespecified threshold. For such hypotheses self‐normalization, which was introduced in 2010 by Shao, and Shao and Zhang and is commonly used to avoid the estimation of nuisance parameters, is not directly applicable. We develop new self‐normalized procedures for testing relevant hypotheses in the one‐sample, two‐sample and change point problem and investigate their asymptotic properties. Finite sample properties of the tests proposed are illustrated by means of a simulation study and data examples. Our main focus is on functional time series, but extensions to other settings are also briefly discussed.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://doi.org/10.1111/rssb.12370

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:82:y:2020:i:3:p:629-660

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:82:y:2020:i:3:p:629-660