On the optimality of randomization in experimental design: How to randomize for minimax variance and design‐based inference
Nathan Kallus
Journal of the Royal Statistical Society Series B, 2021, vol. 83, issue 2, 404-409
Abstract:
I study the minimax‐optimal design for a two‐arm controlled experiment where conditional mean outcomes vary in a given set and the objective is effect‐estimation precision. When this set is permutation symmetric, the optimal design is shown to be complete randomization. Notably, even when the set has structure (i.e., is not permutation symmetric), being minimax‐optimal for precision still requires randomization beyond a single partition of units, that is, beyond randomizing the identity of treatment. A single partition is not optimal even when conditional means are linear. Since this only targets precision, it may nonetheless not ensure sufficient uniformity for design‐based (i.e., randomization) inference. I therefore propose the inference‐constrained mixed‐strategy optimal design as the minimax‐optimal for precision among designs subject to sufficient‐uniformity constraints.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/rssb.12412
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:83:y:2021:i:2:p:404-409
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().