Isotonic distributional regression
Alexander Henzi,
Johanna F. Ziegel and
Tilmann Gneiting
Journal of the Royal Statistical Society Series B, 2021, vol. 83, issue 5, 963-993
Abstract:
Isotonic distributional regression (IDR) is a powerful non‐parametric technique for the estimation of conditional distributions under order restrictions. In a nutshell, IDR learns conditional distributions that are calibrated, and simultaneously optimal relative to comprehensive classes of relevant loss functions, subject to isotonicity constraints in terms of a partial order on the covariate space. Non‐parametric isotonic quantile regression and non‐parametric isotonic binary regression emerge as special cases. For prediction, we propose an interpolation method that generalizes extant specifications under the pool adjacent violators algorithm. We recommend the use of IDR as a generic benchmark technique in probabilistic forecast problems, as it does not involve any parameter tuning nor implementation choices, except for the selection of a partial order on the covariate space. The method can be combined with subsample aggregation, with the benefits of smoother regression functions and gains in computational efficiency. In a simulation study, we compare methods for distributional regression in terms of the continuous ranked probability score (CRPS) and L2 estimation error, which are closely linked. In a case study on raw and post‐processed quantitative precipitation forecasts from a leading numerical weather prediction system, IDR is competitive with state of the art techniques.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/rssb.12450
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:83:y:2021:i:5:p:963-993
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().