Optimal thinning of MCMC output
Marina Riabiz,
Wilson Ye Chen,
Jon Cockayne,
Pawel Swietach,
Steven A. Niederer,
Lester Mackey and
Chris. J. Oates
Journal of the Royal Statistical Society Series B, 2022, vol. 84, issue 4, 1059-1081
Abstract:
The use of heuristics to assess the convergence and compress the output of Markov chain Monte Carlo can be sub‐optimal in terms of the empirical approximations that are produced. Typically a number of the initial states are attributed to ‘burn in’ and removed, while the remainder of the chain is ‘thinned’ if compression is also required. In this paper, we consider the problem of retrospectively selecting a subset of states, of fixed cardinality, from the sample path such that the approximation provided by their empirical distribution is close to optimal. A novel method is proposed, based on greedy minimisation of a kernel Stein discrepancy, that is suitable when the gradient of the log‐target can be evaluated and approximation using a small number of states is required. Theoretical results guarantee consistency of the method and its effectiveness is demonstrated in the challenging context of parameter inference for ordinary differential equations. Software is available in the Stein Thinning package in Python, R and MATLAB.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/rssb.12503
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:84:y:2022:i:4:p:1059-1081
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().