CovNet: Covariance networks for functional data on multidimensional domains
Soham Sarkar and
Victor M. Panaretos
Journal of the Royal Statistical Society Series B, 2022, vol. 84, issue 5, 1785-1820
Abstract:
Covariance estimation is ubiquitous in functional data analysis. Yet, the case of functional observations over multidimensional domains introduces computational and statistical challenges, rendering the standard methods effectively inapplicable. To address this problem, we introduce Covariance Networks (CovNet) as a modelling and estimation tool. The CovNet model is universal—it can be used to approximate any covariance up to desired precision. Moreover, the model can be fitted efficiently to the data and its neural network architecture allows us to employ modern computational tools in the implementation. The CovNet model also admits a closed‐form eigendecomposition, which can be computed efficiently, without constructing the covariance itself. This facilitates easy storage and subsequent manipulation of a covariance in the context of the CovNet. We establish consistency of the proposed estimator and derive its rate of convergence. The usefulness of the proposed method is demonstrated via an extensive simulation study and an application to resting state functional magnetic resonance imaging data.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssb.12551
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:84:y:2022:i:5:p:1785-1820
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().