EconPapers    
Economics at your fingertips  
 

The multivariate Gaussian tail model: an application to oceanographic data

P. Bortot, S. Coles and J. Tawn

Journal of the Royal Statistical Society Series C, 2000, vol. 49, issue 1, 31-049

Abstract: Optimal design of sea‐walls requires the extreme value analysis of a variety of oceanographic data. Asymptotic arguments suggest the use of multivariate extreme value models, but empirical studies based on data from several UK locations have revealed an inadequacy of this class for modelling the types of dependence that are often encountered in such data. This paper develops a specific model based on the marginal transformation of the tail of a multivariate Gaussian distribution and examines its utility in overcoming the limitations that are encountered with the current methodology. Diagnostics for the model are developed and the robustness of the model is demonstrated through a simulation study. Our analysis focuses on extreme sea‐levels at Newlyn, a port in south‐west England, for which previous studies had given conflicting estimates of the probability of flooding. The novel diagnostics suggest that this discrepancy may be due to the weak dependence at extreme levels between wave periods and both wave heights and still water levels. The multivariate Gaussian tail model is shown to resolve the conflict and to offer a convincing description of the extremal sea‐state process at Newlyn.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://doi.org/10.1111/1467-9876.00177

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:49:y:2000:i:1:p:31-049

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:49:y:2000:i:1:p:31-049