Diagnostics for multivariate imputations
Kobi Abayomi,
Andrew Gelman and
Marc Levy
Journal of the Royal Statistical Society Series C, 2008, vol. 57, issue 3, 273-291
Abstract:
Summary. We consider three sorts of diagnostics for random imputations: displays of the completed data, which are intended to reveal unusual patterns that might suggest problems with the imputations, comparisons of the distributions of observed and imputed data values and checks of the fit of observed data to the model that is used to create the imputations. We formulate these methods in terms of sequential regression multivariate imputation, which is an iterative procedure in which the missing values of each variable are randomly imputed conditionally on all the other variables in the completed data matrix. We also consider a recalibration procedure for sequential regression imputations. We apply these methods to the 2002 environmental sustainability index, which is a linear aggregation of 64 environmental variables on 142 countries.
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2007.00613.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:57:y:2008:i:3:p:273-291
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().