EconPapers    
Economics at your fingertips  
 

A latent Gaussian model for compositional data with zeros

Adam Butler and Chris Glasbey

Journal of the Royal Statistical Society Series C, 2008, vol. 57, issue 5, 505-520

Abstract: Summary. Compositional data record the relative proportions of different components within a mixture and arise frequently in many fields. Standard statistical techniques for the analysis of such data assume the absence of proportions which are genuinely zero. However, real data can contain a substantial number of zero values. We present a latent Gaussian model for the analysis of compositional data which contain zero values, which is based on assuming that the data arise from a (deterministic) Euclidean projection of a multivariate Gaussian random variable onto the unit simplex. We propose an iterative algorithm to simulate values from this model and apply the model to data on the proportions of fat, protein and carbohydrate in different groups of food products. Finally, evaluation of the likelihood involves the calculation of difficult integrals if the number of components is more than 3, so we present a hybrid Gibbs rejection sampling scheme that can be used to draw inferences about the parameters of the model when the number of components is arbitrarily large.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2008.00627.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:57:y:2008:i:5:p:505-520

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:57:y:2008:i:5:p:505-520