EconPapers    
Economics at your fingertips  
 

Bayesian quantile regression for count data with application to environmental epidemiology

Duncan Lee and Tereza Neocleous

Journal of the Royal Statistical Society Series C, 2010, vol. 59, issue 5, 905-920

Abstract: Summary. Quantile regression estimates the relationship between covariates and the τth quantile of the response distribution, rather than the mean. We present a Bayesian quantile regression model for count data and apply it in the field of environmental epidemiology, which is an area in which quantile regression is yet to be used. Our methods are applied to a new study of the relationship between long‐term exposure to air pollution and respiratory hospital admissions in Scotland. We observe a decreasing relationship between pollution and the τth quantile of the response distribution, with a relative risk ranging between 1.023 and 1.070.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2010.00725.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:59:y:2010:i:5:p:905-920

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:59:y:2010:i:5:p:905-920