Statistical inference and computational efficiency for spatial infectious disease models with plantation data
Patrick E. Brown,
Florencia Chimard,
Alexander Remorov,
Jeffrey S. Rosenthal and
Xin Wang
Journal of the Royal Statistical Society Series C, 2014, vol. 63, issue 3, 467-482
Abstract:
type="main" xml:id="rssc12036-abs-0001">
The paper considers data from an aphid infestation on a sugar cane plantation and illustrates the use of an individual level infectious disease model for making inference on the biological process underlying these data. The data are interval censored, and the practical issues involved with the use of Markov chain Monte Carlo algorithms with models of this sort are explored and developed. As inference for spatial infectious disease models is complex and computationally demanding, emphasis is put on a minimal parsimonious model and speed of code execution. With careful coding we can obtain highly efficient Markov chain Monte Carlo algorithms based on a simple random-walk Metropolis-within-Gibbs routine. An assessment of model fit is provided by comparing the predicted numbers of weekly infections from the data to the trajectories of epidemics simulated from the posterior distributions of model parameters. This assessment shows that the data have periods where the epidemic proceeds more slowly and more quickly than the (temporally homogeneous) model predicts.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssc.2014.63.issue-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:63:y:2014:i:3:p:467-482
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().