EconPapers    
Economics at your fingertips  
 

Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia

I. Gede Nyoman M. Jaya and Henk Folmer ()

Journal of Regional Science, 2021, vol. 61, issue 4, 849-881

Abstract: The coronavirus disease (COVID‐19) has spread rapidly to multiple countries including Indonesia. Mapping its spatiotemporal pattern and forecasting (small area) outbreaks are crucial for containment and mitigation strategies. Hence, we introduce a parsimonious space–time model of new infections that yields accurate forecasts but only requires information regarding the number of incidences and population size per geographical unit and time period. Model parsimony is important because of limited knowledge regarding the causes of COVID‐19 and the need for rapid action to control outbreaks. We outline the basics of Bayesian estimation, forecasting, and mapping, in particular for the identification of hotspots. The methodology is applied to county‐level data of West Java Province, Indonesia.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1111/jors.12533

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jregsc:v:61:y:2021:i:4:p:849-881

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0022-4146

Access Statistics for this article

Journal of Regional Science is currently edited by Marlon G. Boarnet, Matthew Kahn and Mark D. Partridge

More articles in Journal of Regional Science from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jregsc:v:61:y:2021:i:4:p:849-881