Risk Measures Based on Benchmark Loss Distributions
Valeria Bignozzi,
Matteo Burzoni and
Cosimo Munari
Journal of Risk & Insurance, 2020, vol. 87, issue 2, 437-475
Abstract:
We introduce a class of quantile‐based risk measures that generalize Value at Risk (VaR) and, likewise Expected Shortfall (ES), take into account both the frequency and the severity of losses. Under VaR a single confidence level is assigned regardless of the size of potential losses. We allow for a range of confidence levels that depend on the loss magnitude. The key ingredient is a benchmark loss distribution (BLD), that is, a function that associates to each potential loss a maximal acceptable probability of occurrence. The corresponding risk measure, called Loss VaR (LVaR), determines the minimal capital injection that is required to align the loss distribution of a risky position to the target BLD. By design, one has full flexibility in the choice of the BLD profile and, therefore, in the range of relevant quantiles. Special attention is given to piecewise constant functions and to tail distributions of benchmark random losses, in which case the acceptability condition imposed by the BLD boils down to first‐order stochastic dominance. We investigate the main theoretical properties of LVaR with a focus on their comparison with VaR and ES and discuss applications to capital adequacy, portfolio risk management, and catastrophic risk.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
https://doi.org/10.1111/jori.12285
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jrinsu:v:87:y:2020:i:2:p:437-475
Ordering information: This journal article can be ordered from
http://www.wiley.com/bw/subs.asp?ref=0022-4367
Access Statistics for this article
Journal of Risk & Insurance is currently edited by Joan T. Schmit
More articles in Journal of Risk & Insurance from The American Risk and Insurance Association Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().