EconPapers    
Economics at your fingertips  
 

A Gaussian Mixture Autoregressive Model for Univariate Time Series

Leena Kalliovirta, Mika Meitz () and Pentti Saikkonen

Journal of Time Series Analysis, 2015, vol. 36, issue 2, 247-266

Abstract: type="main" xml:id="jtsa12108-abs-0001"> The Gaussian mixture autoregressive model studied in this article belongs to the family of mixture autoregressive models, but it differs from its previous alternatives in several advantageous ways. A major theoretical advantage is that, by the definition of the model, conditions for stationarity and ergodicity are always met and these properties are much more straightforward to establish than is common in nonlinear autoregressive models. Another major advantage is that, for a pth-order model, explicit expressions of the stationary distributions of dimension p + 1 or smaller are known and given by mixtures of Gaussian distributions with constant mixing weights. In contrast, the conditional distribution given the past observations is a Gaussian mixture with time-varying mixing weights that depend on p lagged values of the series in a natural and parsimonious way. Because of the known stationary distribution, exact maximum likelihood estimation is feasible and one can assess the applicability of the model in advance by using a non-parametric estimate of the stationary density. An empirical example with interest rate series illustrates the practical usefulness and flexibility of the model, particularly in allowing for level shifts and temporary changes in variance. Copyright © 2014 Wiley Publishing Ltd

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://hdl.handle.net/10.1111/jtsa.12108 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:36:y:2015:i:2:p:247-266

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-31
Handle: RePEc:bla:jtsera:v:36:y:2015:i:2:p:247-266