Modeling the Interactions between Volatility and Returns using EGARCH‐M
Andrew Harvey and
Rutger-Jan Lange
Journal of Time Series Analysis, 2018, vol. 39, issue 6, 909-919
Abstract:
An EGARCH‐M model, in which the logarithm of scale is driven by the score of the conditional distribution, is shown to be theoretically tractable as well as practically useful. A two‐component extension makes it possible to distinguish between the short‐ and long‐run effects of returns on volatility, and the resulting short‐ and long‐run volatility components are then allowed to have different effects on returns, with the long‐run component yielding the equity risk premium. The EGARCH formulation allows for more flexibility in the asymmetry of the volatility response (leverage) than standard GARCH models and suggests that, for weekly observations on two major stock market indices, the short‐term response is close to being anti‐symmetric.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12419
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:39:y:2018:i:6:p:909-919
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().