EconPapers    
Economics at your fingertips  
 

Quasi‐maximum likelihood estimation of conditional autoregressive Wishart models

Manabu Asai and Mike K. P. So

Journal of Time Series Analysis, 2021, vol. 42, issue 3, 271-294

Abstract: In this article, we consider a quasi‐maximum likelihood (QML) estimation of conditional autoregressive Wishart models, which generalize the conditional autoregressive Wishart models by not restricting the conditional distribution of covariances to follow the Wishart distribution. Strong consistency is established under the existence of the expectation of the log of the determinant. Sufficient conditions for asymptotic normality of the QML estimator are derived. Monte Carlo experiments show an inefficiency caused by using non‐Wishart distributions, which are negligible for the sample size T = 500. We use the daily covariance matrix of the returns of the Nikkei 225 index and its futures for the QML estimation of the conditional autoregressive Wishart model. The results indicate its appropriateness for the QML estimation.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/jtsa.12566

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:42:y:2021:i:3:p:271-294

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:42:y:2021:i:3:p:271-294