OPTIMAL MULTIPLE STOPPING AND VALUATION OF SWING OPTIONS
René Carmona and
Nizar Touzi
Mathematical Finance, 2008, vol. 18, issue 2, 239-268
Abstract:
The connection between optimal stopping of random systems and the theory of the Snell envelop is well understood, and its application to the pricing of American contingent claims is well known. Motivated by the pricing of swing contracts (whose recall components can be viewed as contingent claims with multiple exercises of American type) we investigate the mathematical generalization of these results to the case of possible multiple stopping. We prove existence of the multiple exercise policies in a fairly general set‐up. We then concentrate on the Black–Scholes model for which we give a constructive solution in the perpetual case, and an approximation procedure in the finite horizon case. The last two sections of the paper are devoted to numerical results. We illustrate the theoretical results of the perpetual case, and in the finite horizon case, we introduce numerical approximation algorithms based on ideas of the Malliavin calculus.
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (65)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9965.2007.00331.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:18:y:2008:i:2:p:239-268
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().