Pricing Options With Curved Boundaries1
Naoto Kunitomo and
Masayuki Ikeda
Mathematical Finance, 1992, vol. 2, issue 4, 275-298
Abstract:
This paper provides a general valuation method for the European options whose payoff is restricted by curved boundaries contractually set on the underlying asset price process when it follows the geometric Brownian motion. Our result is based on the generalization of the Levy formula on the Brownian motion by T. W. Anderson in sequential analysis. We give the explicit probability formula that the geometric Brownian motion reaches in an interval at the maturity date without hitting either the lower or the upper curved boundaries. Although the general pricing formulae for options with boundaries are expressed as infinite series in the general case, our numerical study suggests that the convergence of the series is rapid. Our results include the formulae for options with a lower boundary by Merton (1973), for path‐dependent options by Goldman, Sossin, and Gatto (1979), and for some corporate securities as special cases.
Date: 1992
References: View complete reference list from CitEc
Citations: View citations in EconPapers (66)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9965.1992.tb00033.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:2:y:1992:i:4:p:275-298
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().