Calibration of local‐stochastic volatility models by optimal transport
Ivan Guo,
Grégoire Loeper and
Shiyi Wang
Mathematical Finance, 2022, vol. 32, issue 1, 46-77
Abstract:
In this paper, we study a semi‐martingale optimal transport problem and its application to the calibration of local‐stochastic volatility (LSV) models. Rather than considering the classical constraints on marginal distributions at initial and final time, we optimize our cost function given the prices of a finite number of European options. We formulate the problem as a convex optimization problem, for which we provide a PDE formulation along with its dual counterpart. Then we solve numerically the dual problem, which involves a fully non‐linear Hamilton–Jacobi–Bellman equation. The method is tested by calibrating a Heston‐like LSV model with simulated data and foreign exchange market data.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/mafi.12335
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:32:y:2022:i:1:p:46-77
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().