Deep empirical risk minimization in finance: Looking into the future
Anders Max Reppen and
Halil Mete Soner
Mathematical Finance, 2023, vol. 33, issue 1, 116-145
Abstract:
Many modern computational approaches to classical problems in quantitative finance are formulated as empirical loss minimization (ERM), allowing direct applications of classical results from statistical machine learning. These methods, designed to directly construct the optimal feedback representation of hedging or investment decisions, are analyzed in this framework demonstrating their effectiveness as well as their susceptibility to generalization error. Use of classical techniques shows that over‐training renders trained investment decisions to become anticipative, and proves overlearning for large hypothesis spaces. On the other hand, nonasymptotic estimates based on Rademacher complexity show the convergence for sufficiently large training sets. These results emphasize the importance of synthetic data generation and the appropriate calibration of complex models to market data. A numerically studied stylized example illustrates these possibilities, including the importance of problem dimension in the degree of overlearning, and the effectiveness of this approach.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/mafi.12365
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:33:y:2023:i:1:p:116-145
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().