EconPapers    
Economics at your fingertips  
 

Critical point equation and closed conformal vector fields

J. F. da Silva Filho

Mathematische Nachrichten, 2020, vol. 293, issue 12, 2299-2305

Abstract: In this article, we study the critical points of the total scalar curvature functional restricted to the space of metrics with constant scalar curvature of unitary volume, for simplicity, CPE metrics. Here, we prove that a CPE metric admitting a non‐trivial closed conformal vector field must be isometric to a round sphere metric, which provides a partial answer to the CPE conjecture.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1002/mana.201900316

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:293:y:2020:i:12:p:2299-2305

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:293:y:2020:i:12:p:2299-2305