EconPapers    
Economics at your fingertips  
 

Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm

Ravi Varadhan and Christophe Roland

Scandinavian Journal of Statistics, 2008, vol. 35, issue 2, 335-353

Abstract: Abstract. The expectation‐maximization (EM) algorithm is a popular approach for obtaining maximum likelihood estimates in incomplete data problems because of its simplicity and stability (e.g. monotonic increase of likelihood). However, in many applications the stability of EM is attained at the expense of slow, linear convergence. We have developed a new class of iterative schemes, called squared iterative methods (SQUAREM), to accelerate EM, without compromising on simplicity and stability. SQUAREM generally achieves superlinear convergence in problems with a large fraction of missing information. Globally convergent schemes are easily obtained by viewing SQUAREM as a continuation of EM. SQUAREM is especially attractive in high‐dimensional problems, and in problems where model‐specific analytic insights are not available. SQUAREM can be readily implemented as an ‘off‐the‐shelf’ accelerator of any EM‐type algorithm, as it only requires the EM parameter updating. We present four examples to demonstrate the effectiveness of SQUAREM. A general‐purpose implementation (written in R) is available.

Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (35)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2007.00585.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:35:y:2008:i:2:p:335-353

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:35:y:2008:i:2:p:335-353