EconPapers    
Economics at your fingertips  
 

Bayesian Semiparametric Modelling in Quantile Regression

Athanasios Kottas and Milovan Krnjajić

Scandinavian Journal of Statistics, 2009, vol. 36, issue 2, 297-319

Abstract: Abstract. We propose a Bayesian semiparametric methodology for quantile regression modelling. In particular, working with parametric quantile regression functions, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed non‐parametric prior probability models allow the shape of the error density to adapt to the data and thus provide more reliable predictive inference than models based on parametric error distributions. We consider extensions to quantile regression for data sets that include censored observations. Moreover, we employ dependent Dirichlet processes to develop quantile regression models that allow the error distribution to change non‐parametrically with the covariates. Posterior inference is implemented using Markov chain Monte Carlo methods. We assess and compare the performance of our models using both simulated and real data sets.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2008.00626.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:36:y:2009:i:2:p:297-319

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:36:y:2009:i:2:p:297-319