A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data
Ying Zhang,
Lei Hua and
Jian Huang
Scandinavian Journal of Statistics, 2010, vol. 37, issue 2, 338-354
Abstract:
Abstract. We propose a spline‐based semiparametric maximum likelihood approach to analysing the Cox model with interval‐censored data. With this approach, the baseline cumulative hazard function is approximated by a monotone B‐spline function. We extend the generalized Rosen algorithm to compute the maximum likelihood estimate. We show that the estimator of the regression parameter is asymptotically normal and semiparametrically efficient, although the estimator of the baseline cumulative hazard function converges at a rate slower than root‐n. We also develop an easy‐to‐implement method for consistently estimating the standard error of the estimated regression parameter, which facilitates the proposed inference procedure for the Cox model with interval‐censored data. The proposed method is evaluated by simulation studies regarding its finite sample performance and is illustrated using data from a breast cosmesis study.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2009.00680.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:37:y:2010:i:2:p:338-354
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().