Bayesian Estimators for Small Area Models when Auxiliary Information is Measured with Error
Serena Arima,
Gauri S. Datta and
Brunero Liseo
Scandinavian Journal of Statistics, 2015, vol. 42, issue 2, 518-529
Abstract:
type="main" xml:id="sjos12120-abs-0001"> Small area estimators in linear models are typically expressed as a convex combination of direct estimators and synthetic estimators from a suitable model. When auxiliary information used in the model is measured with error, a new estimator, accounting for the measurement error in the covariates, has been proposed in the literature. Recently, for area-level model, Ybarra & Lohr (Biometrika, 95, 2008, 919) suggested a suitable modification to the estimates of small area means based on Fay & Herriot (J. Am. Stat. Assoc., 74, 1979, 269) model where some of the covariates are measured with error. They used a frequentist approach based on the method of moments. Adopting a Bayesian approach, we propose to rewrite the measurement error model as a hierarchical model; we use improper non-informative priors on the model parameters and show, under a mild condition, that the joint posterior distribution is proper and the marginal posterior distributions of the model parameters have finite variances. We conduct a simulation study exploring different scenarios. The Bayesian predictors we propose show smaller empirical mean squared errors than the frequentist predictors of Ybarra & Lohr (Biometrika, 95, 2008, 919), and they seem also to be more stable in terms of variability and bias. We apply the proposed methodology to two real examples.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12120 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:42:y:2015:i:2:p:518-529
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().