Likelihood Ratio Tests for High-Dimensional Normal Distributions
Tiefeng Jiang and
Yongcheng Qi
Scandinavian Journal of Statistics, 2015, vol. 42, issue 4, 988-1009
Abstract:
type="main" xml:id="sjos12147-abs-0001"> In their recent work, Jiang and Yang studied six classical Likelihood Ratio Test statistics under high-dimensional setting. Assuming that a random sample of size n is observed from a p-dimensional normal population, they derive the central limit theorems (CLTs) when p and n are proportional to each other, which are different from the classical chi-square limits as n goes to infinity, while p remains fixed. In this paper, by developing a new tool, we prove that the mentioned six CLTs hold in a more applicable setting: p goes to infinity, and p can be very close to n. This is an almost sufficient and necessary condition for the CLTs. Simulations of histograms, comparisons on sizes and powers with those in the classical chi-square approximations and discussions are presented afterwards.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12147 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:42:y:2015:i:4:p:988-1009
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery (contentdelivery@wiley.com).