EconPapers    
Economics at your fingertips  
 

Score estimation in the monotone single‐index model

Fadoua Balabdaoui, Piet Groeneboom and Kim Hendrickx

Scandinavian Journal of Statistics, 2019, vol. 46, issue 2, 517-544

Abstract: We consider estimation in the single‐index model where the link function is monotone. For this model, a profile least‐squares estimator has been proposed to estimate the unknown link function and index. Although it is natural to propose this procedure, it is still unknown whether it produces index estimates that converge at the parametric rate. We show that this holds if we solve a score equation corresponding to this least‐squares problem. Using a Lagrangian formulation, we show how one can solve this score equation without any reparametrization. This makes it easy to solve the score equations in high dimensions. We also compare our method with the effective dimension reduction and the penalized least‐squares estimator methods, both available on CRAN as R packages, and compare with link‐free methods, where the covariates are elliptically symmetric.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://doi.org/10.1111/sjos.12361

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:2:p:517-544

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:46:y:2019:i:2:p:517-544