Maximum pseudo‐likelihood estimation based on estimated residuals in copula semiparametric models
Marek Omelka,
Šárka Hudecová and
Natalie Neumeyer
Scandinavian Journal of Statistics, 2021, vol. 48, issue 4, 1433-1473
Abstract:
This paper deals with an estimation of the dependence structure of a multidimensional response variable in the presence of a multivariate covariate. It is assumed that the covariate affects only the marginal distributions through regression models while the dependence structure, which is described by a copula, is unaffected. A parametric estimation of the copula function is considered with focus on the maximum pseudo‐likelihood method. It is proved that under some appropriate regularity assumptions the estimator calculated from the residuals has the same asymptotic distribution as the estimator based on the unobserved errors. In such case one can ignore the fact that the response is first adjusted for the effect of the covariate. The theoretical results are accompanied by a Monte Carlo simulation study which illustrates that the maximum pseudo‐likelihood estimator based on residuals may behave poorly when the stated regularity assumptions are not satisfied.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12498
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:48:y:2021:i:4:p:1433-1473
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().